top of page

Commercialized Electroactive Polymer Technology

Updated: Jun 10, 2022

Electroactive Polymer (EAP) technology has over a 100-year history in research settings but very limited commercialization. Largely used as artificial muscles due to many electroactive polymers exhibiting soft compliant structures and biomimetic initiatives in research, electroactive polymers are also popular in the fields of soft robotics, tactile displays, and microfluidics. However, the commercialization of electroactive polymers has had minimal success when compared with other niche deformable actuator or sensor technologies, such as piezoelectric or shape memory alloys.

The lack of commercialization of electroactive polymers is historically due to technical limitations or inherent flaws in the old technologies. The best example is the dielectric elastomer actuator (DEA). Once a mature electroactive polymer technology and very promising for commercialization, dielectric elastomer actuators were found to exhibit a severe dielectric breakdown of the material, resulting in poor lifetime characteristics. This lifetime deficiency proved the technology inadequate for nearly all of the applications for which it was developed and hindered its path to commercialization.

Renewing the promise of full-scale electroactive polymer commercialization is HASEL actuation technology. HASEL actuators are one of the newer electroactive polymer technologies and they don’t use elastomers, providing a variety of material advantages such as improved lifetime and high volume production potential. Additionally, HASEL actuators have superior technical characteristics when compared to other niche actuator and sensor technologies such as piezoelectric and shape memory alloy (SMA) actuators. For example, HASEL actuators have fast speeds compared to the slow performance of competing shape memory alloy technology. Another competing technology to HASEL actuators that has successfully been commercialized is piezoelectric (piezo) actuators. Piezos have very small strain capabilities, and the EU and other regulatory bodies are expected to broaden the ban on lead products to include piezos, putting the future of this technology in doubt. In comparison, HASEL actuators have strains up to 100% and do not use lead, allowing for successful commercialization by Artimus Robotics. The commercialization of the HASEL actuation technology is founded on partnerships with leading researchers such as the Keplinger Research Group and the Max Planck Institute for Intelligent Systems.

Find the perfect HASEL actuator for your application by providing your specifications and application details in the Application Assistant.

About Artimus Robotics

Artimus Robotics designs and manufactures soft electric actuators. The technology was inspired by nature (muscles) and spun out of the University of Colorado. HASEL (Hydraulically Amplified Self-healing ELectrostatic) actuator technology operates when electrostatic forces are applied to a flexible polymer pouch and dielectric liquid to drive shape change in a soft structure. These principles can be applied to achieve a contracting motion, expanding motion, or other complex deformations. For more information, please visit Artimus Robotics or contact

208 views0 comments

Recent Posts

See All


bottom of page